目的 揭示细菌脂多糖(LPS)诱发小鼠肿瘤样增殖中血管新生及组织增殖的病理机制及青蒿素和桦木酸阻断肿瘤样增殖的药理机制。方法 利用脂多糖或含脂多糖的完全弗氏佐剂(CFA)建立小鼠皮下组织及关节滑膜肿瘤样增殖模型,在形态学特征(炎症分级)描述及组织化学指标(血管及组织增殖、炎性细胞浸润)鉴定的基础上,采用生化法、生理法和免疫法定量测定一氧化氮(NO)、血氧饱和度(SpO2)和3-硝基酪氨酸(3NT)的血清浓度,并对诱导型一氧化氮合酶(iNOS)、缺氧诱导因子1α(HIF-1α)和血管内皮细胞生长因子(VEGF)的表达水平进行免疫组化分析。结果 脂多糖与完全弗氏佐剂可导致炎症表型及组织异常增殖相关显微结构变化,使一氧化氮升高、血氧饱和度下降、3-硝基酪氨酸增加(蛋白质硝化),诱导型一氧化氮合酶、缺氧诱导因子1α和血管内皮细胞生长因子表达显著上调,并伴随血管新生及组织增殖。一氧化氮供体化合物可重现此过程,而一氧化氮合成抑制剂则有拮抗作用。青蒿琥酯和桦木酸可下调诱导型一氧化氮合酶、缺氧诱导因子1α和血管内皮细胞生长因子表达,降低一氧化氮并提高血氧饱和度,缓解或中止炎症性异常血管新生和组织增殖现象。结论 脂多糖激发的诱导型一氧化氮合酶过表达和一氧化氮大量释放可能是血管新生及组织增殖的直接驱动力,青蒿琥酯和桦木酸能阻断肿瘤样增殖的病理过程,因而具有潜在的预防及治疗作用。
Abstract
OBJECTIVE To disclose the pathological mechanism of bacterial LPS-induced angiogenesis and hyperplasia in tumor-like hyperplasia and the pharmacological mechanism underlying artesunate and betulilic acid blocking tumor-like hyperplasia. METHODS The tumor-like hyperplasia models were established for mouse hypodermis and articular synovium using LPS or LPS-containing complete Fround′s adjuvant (CFA). The morphological features (inflammatory grades) were described and the histochemical signatures (angiogenesis, hyperplasia, and inflammatory infiltration) were examined. The serial concentrations of nitric oxide (NO), blood oxygen saturation (SpO2) and 3-nitrotyrosine (3NT) were quantitatively determined by biochemical, physiological and immunological procedures, and the expression levels of inducible nitric oxide synthase (iNOS), hypoxia-induced factor 1α (HIF-1α) and vascular endothelial growth factor (VEGF) were analyzed by the immunohistochemical method. RESULTS Both LPS and CFA can lead to the inflammatory phenotypes and abnormal hyperplasia-related microscopic alterations. They enable the elevation of NO, decline of SpO2, and increase of 3NT (protein nitration). The considerable up-regulation of iNOS, HIF-1α and VEGF are accompanied by angiogenesis and hyperplasia. While a NO donor compound replicates such pathogenesis, a NO synthesis inhibitor antagonizes this effect. Artesunate and betulilic acid down-regulate iNOS, HIF-1α and VEGF, decrease NO, and increase SpO2, thereby leading to the melioration or interruption of aberrant inflammatory angiogenesis and hyperplasia. CONCLUSION LPS-triggered iNOS overexpression and potent NO burst may represent the direct drivers for angiogenesis and hyperplasia. Due to repression of the pathogenic process of tumor-like hyperplasia, artesunate and betulilic acid possess the prophylactic and therapeutic potentials.
关键词
青蒿素 /
桦木酸 /
脂多糖 /
血管新生 /
组织增殖 /
缺氧胁迫 /
蛋白质硝化
{{custom_keyword}} /
Key words
artesunate /
betulilic acid /
lipopolysaccharide /
angiogenesis /
hyperplasia /
hypoxia stress /
protein nitration
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] WU Y S, CHEN S N. Inflammation and carcinogenesis . J Cancer Ther, 2013, 4(10): 1449-1451.
[2] THE EUROGAST STUDY GROUP. An international association of Helicobacter pylori infection and gastric cancer . Lancet, 1993, 341(8857): 1359-1362.
[3] IARC WORKING GROUP ON THE EVALUATION OF CARCINOGENIC RISKS TO HUMANS. Schistosomes, liver flukes and Helicobacter pylori . IARC Monogr Eval Carcinog Risks Hum, 1994, 61(1): 177-240.
[4] SCHMAUSSER B, ANDRULIS M, ENDRICH S, et al. Expression and subcellular distribution of toll-like receptors TLR4, TLR5 and TLR9 on the gastric epithelium in Helicobacter pylori infection . Clin Exp Immunol, 2004, 136(3):521-526.
[5] KENTARO C, TAKASHI I, MANABU K, et al. Helicobacter pylori augments growth of gastric cancers via the lipopolysaccharide-Toll-like receptor 4 pathway whereas its lipopolysaccharide attenuates antitumor activities of human mononuclear cells . Clin Cancer Res, 2008, 14(10): 2909-2917.
[6] TONINO P. Gastritis and Gastric Cancer - New Insights in Gastroprotection, Diagnosis and Treatments . Rijeka:InTech, 2011.
[7] BAO F, WU P, XIAO N, et al. Nitric oxide-driven hypoxia initiates synovial angiogenesis, hyperplasia and inflammatory lesions in mice . PLoS One, 2012, 7(3): 34494.
[8] HULTQVIST M, OLOFSSON P, GELDERMAN K A, et al. A new arthritis therapy with oxidative burst inducers. PLoS Med, 2010, 3(9): 348.
[9] WANG J X, TANG W, ZHOU R, et al. The new water-soluble artemisinin derivative SM905 ameliorates collagen-induced arthritis by suppression of inflammatory and Th17 responses . Br J Pharmacol, 2008, 153(6): 1303-1310.
[10] TEACHEY D T, GREINER R, SEIF A, et al. Treatment with sirolimus results in complete responses in patients with autoimmune lymphoproliferative syndrome . Br J Haematol, 2009, 145(1): 101-106.
[11] WU P, BAO F, XIAO N, et al. Artemisinin and rapamycin compromise nitric oxide-driven and hypoxia-triggered acute articular synovitis in mice . Sci Sin Vit (中国科学:生命科学), 2012, 42(9): 724-738.
[12] CUI J, MAO X, OLMAN V, et al. Hypoxia and miscoupling between reduced energy efficiency and signaling to cell proliferation drive cancer to grow increasingly faster . J Mol Cell Biol, 2012, 4(3): 174-176
[13] YOSHIMOTO T, NAKANISHI K, HIROSE S, et al. High serum IL-6 level reflects susceptible status of the host to endotoxin and IL-1/tumor necrosis factor . J Immunol, 1992, 148(11): 3596-3603.
[14] ZENG L P, WEN J K, WEI S Z. Effects of liposaccharide on nitric oxide synthase gene expression in different tissues of rat . Chin J Arteriosclerosis (中国动脉硬化杂志), 1997, 5(2): 112-115.
[15] LIU C F, JIANG J M, LIANG P Z, et al. Inhibitive effect of aminoguanidine on the expression of nitric oxide in osteoarthritic synoviocytes induced by lipopolysaccharide . J Clin Rehab Tiss Eng Res (中国组织工程研究与临床康复), 2007, 11(4): 689-691.
[16] NODA T, AMANO F. Differences in nitric oxide synthase activity in a macrophage-like cell line, RAW264.7 cells, treated with lipopolysaccharide (LPS) in the presence or absence of interferon-gamma (IFN-gamma): Possible heterogeneity of iNOS activity . J Biochem, 1997, 121(1): 38-46.
[17] HARRISON D G, BATES J. The nitrovasodilators:New ideas about old drugs . Circulation, 1993, 87(5): 1461-1467.
[18] WENG X H, CHEN S. Infection and multiple organ failure: Infectious diseases . New Med (新医学), 1996, 27(11): 605-607.
[19] XU W, CHARLES I G, MONCADE S. Nitric oxide: Orchestrating hypoxia regulation through mitochondrial respiration and the endoplasmic reticulum stress response . Cell Res, 2005, 15(1): 63-65.
[20] NG C T, BINIECKA M, KENNEDY A, et al. Synovial tissue hypoxia and inflammation in vivo . Ann Rheum Dis, 2010, 69(7): 1389-1395.
[21] LU M P, DU L Z, YU Z Z, et al. Meconium induces formation of nitrotyrosine and expression of inducible nitric oxide synthase in the rat lung . Chin J Pathophysiol (中国病理生理杂志), 2005, 21(8): 1472-1475.
[22] NATARAJAN R, FISHER B J, FOWLER A A 3RD. Regulation of hypoxia inducible factor-1 by nitric oxide in contrast to hypoxia in microvascular endothelium . FEBS Lett, 2003, 549(1-3): 99-104.
[23] SABER T, VEALE D J, BALOGH E, et al. Toll-like receptor 2 induced angiogenesis and invasion is mediated through the Tie2 signalling pathway in rheumatoid arthritis . PLoS One, 2011, 6(8): 23540.
[24] OHNISHI K, SEMI K, YAMAMOTO T, et al. Premature termination of reprogramming in vivo leads to cancer development through altered epigenetic regulation . Cell, 2014, 156(4): 663-677.
[25] WANG W Q, ZHOU H J, CHEN H H, et al. Inhibitory effect of artesunate on angiogenesis . Chin J Pharmacol Toxicol (中国药理学与毒理学杂志), 2004, 18(1): 32-36.
[26] SUN J H, WANG H. Effects of artesunate on rat corneal neovascularization . Chin J Ocul Trauma Occupat Eye Dis (眼外伤职业眼病杂志), 2007, 29(3): 172-175.
[27] ZHOU H J, WANG W Q, WU G D, et al. Artesunate inhibits angiogenesis and downregulates vascular endothelial growth factor expression in chronic myeloid leukemia K562 cells . Vascul Pharmacol, 2007, 47(2-3): 131-138.
[28] LIANG A H, XUE B Y, LI C Y, et al. Inhibitory effects of artesunate on endotoxin-induced nitric oxide biogenesis . China J Chin Mater Med (中国中药杂志), 2001, 26(11): 770-773.
[29] HUANG L, ZHANG P Z, ZENG Q P. Studies on artemisinin sensitizing compound in inhibiting tumor cell proliferation and suppressing transplanted tumor growth in tumor-bearing nude mice . J Guangzhou Univ Chin Med (广州中药大学学报), 2010, 27(3): 254-257.
[30] EIZNHAMER D A, XU Z Q. Betulinic acid: A promising anticancer candidate . Idrugs, 2004, 7(4): 359-373.
[31] GAO Y, JIA Z, KONG X, et al. Combining betulinic acid and mithramycin a effectively suppresses pancreatic cancer by inhibiting proliferation, invasion, and angiogenesis . Cancer Res, 2011, 71(15): 5182-5193.
[32] KARNA E, SZOKA L, PALKA J A. Betulinic acid inhibits the expression of hypoxia-inducible factor-1a and vascular endothelial growth factor in human endometrial adenocarcinoma cells . Mol Cell Biochem, 2010, 340(1-2): 15-20.
[33] YI J E, OBMINSKA-MRUKOWICZ B, DU J Y, et al. Effects of betulinic acid on immune function and antioxidant activity of mouse peritoneal macrophages . Acta Nutr Sin (营养学报), 2010, 32(3): 281-285.
[34] CHINTHARLAPALLI S, PAPINENI S, RAMAIAH S K, et al. Betulinic acid inhibits prostate cancer growth through inhibition of specificity protein transcription factors . Cancer Res, 2007, 67(6): 2816-2823.
[35] STEINKAMP-FENSKE K, BOLLINGER L, XU H, et al. Reciprocal regulation of endothelial nitric-oxide synthase and NADPH oxidase by betulinic acid in human endothelial cells. J Pharmacol Exp Ther, 2007, 322(2): 836-842.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}